Stability and Generalization of Bipartite Ranking Algorithms
نویسندگان
چکیده
The problem of ranking, in which the goal is to learn a real-valued ranking function that induces a ranking or ordering over an instance space, has recently gained attention in machine learning. We study generalization properties of ranking algorithms, in a particular setting of the ranking problem known as the bipartite ranking problem, using the notion of algorithmic stability. In particular, we derive generalization bounds for bipartite ranking algorithms that have good stability properties. We show that kernel-based ranking algorithms that perform regularization in a reproducing kernel Hilbert space have such stability properties, and therefore our bounds can be applied to these algorithms; this is in contrast with previous generalization bounds for ranking, which are based on uniform convergence and in many cases cannot be applied to these algorithms. A comparison of the bounds we obtain with corresponding bounds for classification algorithms yields some interesting insights into the difference in generalization behaviour between ranking and classification.
منابع مشابه
Generalization Bounds for Ranking Algorithms via Algorithmic Stability
The problem of ranking, in which the goal is to learn a real-valued ranking function that induces a ranking or ordering over an instance space, has recently gained much attention in machine learning. We study generalization properties of ranking algorithms using the notion of algorithmic stability; in particular, we derive generalization bounds for ranking algorithms that have good stability pr...
متن کاملGeneralization Bounds for k-Partite Ranking
We study generalization properties of ranking algorithms in the setting of the k-partite ranking problem. In the k-partite ranking problem, one is given examples of instances labeled with one of k ordered ‘ratings’, and the goal is to learn from these examples a real-valued ranking function that ranks instances in accordance with their ratings. This form of ranking problem arises naturally in a...
متن کاملA generalization of Villarreal's result for unmixed tripartite graphs
In this paper we give a characterization of unmixed tripartite graphs under certain conditions which is a generalization of a result of Villarreal on bipartite graphs. For bipartite graphs two different characterizations were given by Ravindra and Villarreal. We show that these two characterizations imply each other.
متن کاملConfidence-Weighted Bipartite Ranking
Bipartite ranking is a fundamental machine learning and data mining problem. It commonly concerns the maximization of the AUC metric. Recently, a number of studies have proposed online bipartite ranking algorithms to learn from massive streams of class-imbalanced data. These methods suggest both linear and kernel-based bipartite ranking algorithms based on first and second-order online learning...
متن کاملUniform Convergence, Stability and Learnability for Ranking Problems
Most studies were devoted to the design of efficient algorithms and the evaluation and application on diverse ranking problems, whereas few work has been paid to the theoretical studies on ranking learnability. In this paper, we study the relation between uniform convergence, stability and learnability of ranking. In contrast to supervised learning where the learnability is equivalent to unifor...
متن کامل